We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions: every text input is embedded together with instructions explaining the use case (e.g., task and domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a single embedder that can generate text embeddings tailored to different downstream tasks and domains, without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks (66 of which are unseen during training), ranging from classification and information retrieval to semantic textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer parameters than the previous best model, achieves state-of-the-art performance, with an average improvement of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets.
translated by 谷歌翻译
With the rapid development of cloud computing, virtual machine scheduling has become one of the most important but challenging issues for the cloud computing community, especially for practical heterogeneous request sequences. By analyzing the impact of request heterogeneity on some popular heuristic schedulers, it can be found that existing scheduling algorithms can not handle the request heterogeneity properly and efficiently. In this paper, a plug-and-play virtual machine scheduling intensifier, called Resource Assigner (ReAssigner), is proposed to enhance the scheduling efficiency of any given scheduler for heterogeneous requests. The key idea of ReAssigner is to pre-assign roles to physical resources and let resources of the same role form a virtual cluster to handle homogeneous requests. ReAssigner can cooperate with arbitrary schedulers by restricting their scheduling space to virtual clusters. With evaluations on the real dataset from Huawei Cloud, the proposed ReAssigner achieves significant scheduling performance improvement compared with some state-of-the-art scheduling methods.
translated by 谷歌翻译
事件提取(EE)是信息提取的重要任务,该任务旨在从非结构化文本中提取结构化事件信息。大多数先前的工作都专注于提取平坦的事件,同时忽略重叠或嵌套的事件。多个重叠和嵌套EE的模型包括几个连续的阶段来提取事件触发器和参数,这些阶段患有错误传播。因此,我们设计了一种简单而有效的标记方案和模型,以将EE作为单词关系识别,称为oneee。触发器或参数单词之间的关系在一个阶段同时识别出并行网格标记,从而产生非常快的事件提取速度。该模型配备了自适应事件融合模块,以生成事件感知表示表示和距离感知的预测指标,以整合单词关系识别的相对距离信息,从经验上证明这是有效的机制。对3个重叠和嵌套的EE基准测试的实验,即少数FC,GENIA11和GENIA13,表明Oneee实现了最新的(SOTA)结果。此外,ONEEE的推理速度比相同条件下的基线的推理速度快,并且由于它支持平行推断,因此可以进一步改善。
translated by 谷歌翻译
现有的视频域改编(DA)方法需要存储视频帧的所有时间组合或配对源和目标视频,这些视频和目标视频成本昂贵,无法扩展到长时间的视频。为了解决这些局限性,我们建议采用以下记忆高效的基于图形的视频DA方法。首先,我们的方法模型每个源或目标视频通过图:节点表示视频帧和边缘表示帧之间的时间或视觉相似性关系。我们使用图形注意力网络来了解单个帧的重量,并同时将源和目标视频对齐到域不变的图形特征空间中。我们的方法没有存储大量的子视频,而是仅构建一个图形,其中一个视频的图形注意机制,从而大大降低了内存成本。广泛的实验表明,与最先进的方法相比,我们在降低内存成本的同时取得了卓越的性能。
translated by 谷歌翻译
无锚的检测器基本上将对象检测作为密集的分类和回归。对于流行的无锚检测器,通常是引入单个预测分支来估计本地化的质量。当我们深入研究分类和质量估计的实践时,会观察到以下不一致之处。首先,对于某些分配了完全不同标签的相邻样品,训练有素的模型将产生相似的分类分数。这违反了训练目标并导致绩效退化。其次,发现检测到具有较高信心的边界框与相应的地面真相具有较小的重叠。准确的局部边界框将被非最大抑制(NMS)过程中的精确量抑制。为了解决不一致问题,提出了动态平滑标签分配(DSLA)方法。基于最初在FCO中开发的中心概念,提出了平稳的分配策略。在[0,1]中将标签平滑至连续值,以在正样品和负样品之间稳定过渡。联合(IOU)在训练过程中会动态预测,并与平滑标签结合。分配动态平滑标签以监督分类分支。在这样的监督下,质量估计分支自然合并为分类分支,这简化了无锚探测器的体系结构。全面的实验是在MS Coco基准上进行的。已经证明,DSLA可以通过减轻上述无锚固探测器的不一致来显着提高检测准确性。我们的代码在https://github.com/yonghaohe/dsla上发布。
translated by 谷歌翻译
间质性肺部疾病是一大批以不同程度的肺泡炎和肺纤维化为特征的异质性疾病。准确地诊断这些疾病对于制定治疗计划具有显着的指导价值。尽管以前的工作在分类间隙肺部疾病方面取得了令人印象深刻的结果,但仍有提高这些技术准确性的空间,主要是为了增强自动决策。为了提高分类精度,我们的研究提出了一个基于卷积神经网络的框架,并提供了其他信息。首先,通过在Hounsfield单元中重新缩放原始图像,并添加了ILD图像。其次,修改的CNN模型用于为每个组织产生分类概率的载体。第三,输入图像的位置信息,包括在某些位置在CT扫描中不同疾病的发生频率组成,用于计算位置权重向量。最后,使用两个向量之间的Hadamard产品用于为预测产生决策向量。与最先进的方法相比,使用公开可用的ILD数据库的结果显示了使用不同的其他信息预测这些数据的潜力。
translated by 谷歌翻译
大规模蛋白质语言模型(PLM)在蛋白质预测任务中的性能提高,范围从3D结构预测到各种功能预测。特别是,Alphafold(一种开创性的AI系统)可能会重塑结构生物学。但是,尚未探索超出结构预测的AlphaFold,Evoformer的PLM模块的效用。在本文中,我们研究了三个流行PLM的表示能力:ESM-1B(单序),MSA转换器(多个序列比对)和Evoformer(结构),并特别关注Evoformer。具体而言,我们旨在回答以下关键问题:(i)作为Alphafold的一部分,Evoformer是否会产生可预测蛋白质功能的表示形式? (ii)如果是的,可以替换ESM-1B和MSA转换器? (iii)这些PLM多少依赖于进化相关的蛋白质数据?在这方面,他们彼此补充吗?我们通过实证研究以及新的见解和结论来比较这些模型。最后,我们发布代码和数据集以获得可重复性。
translated by 谷歌翻译
数据不足问题(即数据缺失和标签稀缺问题)是由服务和基础架构不足或城市不平衡的发展水平引起的,在实际情况下严重影响了城市计算任务。先前的转移学习方法激发了对数据不足的优雅解决方案,但仅关注一种不足问题,并且未能考虑双方。此外,大多数以前的跨城市转移方法忽略了城市间数据隐私,这在实际应用中是公众关注的。为了解决上述具有挑战性的问题,我们提出了一个新颖的跨城市联合转移学习框架(CCFTL),以应对数据不足和隐私问题。具体而言,CCFTL将关系知识从多个Rich-Data源城市转移到目标城市。此外,针对目标任务的模型参数首先在源数据上进行训练,然后通过参数传输对目标城市进行微调。通过适应联合培训和同型加密设置,CCFTL可以有效地解决城市之间的数据隐私问题。我们将城市地区的分析作为智能城市的应用,并通过一项现实世界的研究评估拟议的方法。这些实验证明了我们框架比几种竞争性最新模型的显着优势。
translated by 谷歌翻译
在本文中,我们从功能学习的角度解决了点云完成的具有挑战性的问题。我们的主要观察结果是,要恢复基础结构以及表面细节,给定部分输入,基本组件是一个很好的特征表示,可以同时捕获全球结构和局部几何细节。因此,我们首先提出了FSNET,这是一个功能结构模块,可以通过从本地区域学习多个潜在图案来适应汇总点的点功能。然后,我们将FSNET集成到粗线管道中,以完成点云完成。具体而言,采用2D卷积神经网络将特征图从FSNET解码为粗且完整的点云。接下来,使用一个点云UP抽样网络来从部分输入和粗糙的中间输出中生成密集的点云。为了有效利用局部结构并增强点分布均匀性,我们提出了IFNET,该点具有自校正机制的点提升模块,该模块可以逐步完善生成的密集点云的细节。我们已经在Shapenet,MVP和Kitti数据集上进行了定性和定量实验,这些实验表明我们的方法优于最先进的点云完成方法。
translated by 谷歌翻译
由于不规则的形状,正常和感染组织之间的各种尺寸和无法区分的边界,仍然是一种具有挑战性的任务,可以准确地在CT图像上进行Covid-19的感染病变。在本文中,提出了一种新的分段方案,用于通过增强基于编码器 - 解码器架构的不同级别的监督信息和融合多尺度特征映射来感染Covid-19。为此,提出了深入的协作监督(共同监督)计划,以指导网络学习边缘和语义的特征。更具体地,首先设计边缘监控模块(ESM),以通过将边缘监督信息结合到初始阶段的下采样的初始阶段来突出显示低电平边界特征。同时,提出了一种辅助语义监督模块(ASSM)来加强通过将掩码监督信息集成到稍后阶段来加强高电平语义信息。然后,通过使用注意机制来扩展高级和低电平特征映射之间的语义间隙,开发了一种注意融合模块(AFM)以融合不同级别的多个规模特征图。最后,在四个各种Covid-19 CT数据集上证明了所提出的方案的有效性。结果表明,提出的三个模块都是有希望的。基于基线(RESUNT),单独使用ESM,ASSM或AFM可以分别将骰子度量增加1.12 \%,1.95 \%,1.63 \%,而在我们的数据集中,通过将三个模型结合在一起可以上升3.97 \% 。与各个数据集的现有方法相比,所提出的方法可以在某些主要指标中获得更好的分段性能,并可实现最佳的泛化和全面的性能。
translated by 谷歌翻译